Spectrum Analyzers

Choice of 4 Types To Fit the Application

R9211 Series

- 2-Channel, 16-Bit Resolution, Wide Dynamic Range of 90 dB (Typical Value)
- Maximum Input Sensitivity of -140 dBV (2 kHz Range, Typical Value)
- 10 mHz to 100 kHz Frequency Range (1-2-5 Steps)
- Domain Method (Measurement Domain Mode) For Ease of Operation
- Portable With Large 8 Inch CRT Screen
- Frequency Analysis Resolution of 25 to 3200 Lines
- Built-In Power Supply For Measurement of Accelerometers

R9211A/9211B/9211C/9211E

FFT Analyzer Series

R9211 Series are portable high performance digital spectrum analyzers which gather the essence of ADVANTEST’s accumulated technologies such as usage of dedicated LSI circuits and high density mounting technology as well as development of circuits with low power consumption.

The R9211 Series consists of 4 types so that the best choice can be made to suit the application. These types are the economical R9211E; the R9211A capable of running zoom; the R9211B ideal for servo analysis; and the R9211C which can do servo analysis as well as curve fitting and frequency response function synthesis.

All these types have the wide measurement frequency range of 10 mHz to 100 kHz, a high 16-bit resolution and a wide dynamic range of 90 dB (typical value). The series also has high sensitivity input of -140 dBV (typical value, 2 kHz range) and a function which allows variation of the frequency resolution from 25 to 3200 lines. These features are effective in isolated measurement of micro-level signals and adjacent spectrum. Of course, the series offers more than just these excellent functions. By means of ADVANTEST’s exclusive systematized domain method (measurement domain mode), measuring time has been shortened over conventional FFT analyzers and operation simplified for a wide range of user applications.

Other features include an increased memory capacity, built-in floppy disk drive and 16-bit direct digital input analysis which are available as standard (optional for some models). These features meet a wide range of applications.

■ Wide Measuring Frequency Range of 10 mHz to 100 kHz

By using high precision analog and digital filters, aliasing filters can be set in all frequency ranges from 10 mHz to 100 kHz. Frequency resolution can also be set from 25 to 3200 lines in all frequency ranges according to the purpose of the analysis. The scale function can be used to display the spectrum of only the required frequency band on the CRT.

■ 16-Bit Resolution, 90 dB (Typical Value) Wide Dynamic Range

90 dB (typical value) wide dynamic range spectrum measurement has been made possible through ADVANTEST’s advanced analog/digital signal processing technology. In order to take full advantage of the functions of the built-in A/D converter, the input sensitivity range can be varied in 1 dB steps. This is a powerful feature for use in measurements of mechanical characteristics of magnetic optical disks, distortion analysis or transient signal analysis of audio signals and transfer function measurement using an impulse hammer.

■ High Sensitivity Measurement of -140 dBV (Typical Value)

When used with a difference input, the R9211 Series attains highly sensitive measurement of -140 dBV (at 0.1 µV, 2 kHz (typ.) range). This is effective for analysis of noise in semiconductors or other devices.

■ ‘I/O + Memory’ Function Allows Direct 16-Bit Digital Input

The ‘I/O + Memory’ function is effective in evaluating A/D converters or DSPs used in digital audio equipment such as DAT and CD players. Spectrum or distortion analysis can be done by inputting a digital signal directly after the A/D converter of the R9211 Series in ‘16-bit + EOC’ (twos complement) data format.

■ A Wide Variety of Marker Analysis and Display Functions

The R9211 Series has a wide variety of marker analysis functions which are effective for analyzing or making evaluations and allowing for a reduction in measurement time. These include a peak marker, next peak marker, harmonics marker, band marker, overall power, attenuation power, partial power, average power, dispersion and X dB marker. The series has been made easier to use, offering simultaneous display of 1 to 4 screens, overlapping display in the same domain or same analysis range and 3-D display of up to 50 lines. There is also a bar display function where the state of one of overall power, partial power, average power or power dispersion can be checked at a glance.
Measurement Domain Modes For Various Measurement Domains

Since digital spectrum analyzers have many measurement applications, there is a tendency for them to have many analysis functions and for their operations to become complicated. In order to free the user from such complicated operations, the R9211 Series has separate measurement domain modes according to the measurement application. The user can select the desired measurement mode without having to trouble with unused analysis functions or setting conditions. The sought-after results can be obtained easily by making only the software key settings necessary for the measurement.

- **Waveform Measurement Mode**
 By using this mode, time domain signal analysis can be done more quickly than was possible previously. Further, an anti-aliasing filter can be turned on and off so that the series can be used as a 16-bit/ 256 kHz sampling oscilloscope. This is ideal for time domain transient phenomenon analysis of the sound of acoustic instruments, starting characteristics tests of engines or motors, waveform analysis of power on reset signals or differential linearity tests of D/A converters.

- **Time/Frequency Analysis Mode**
 In evaluation of musical instruments' sound or hall reverberation characteristics, time variation analysis can be done which focuses on a specified spectrum. Further, analysis can be done of the time characteristics of spectrum variations in the wow and flutter component of VCRs or other equipment (frequency monitor function). The time characteristics of phase variations such as jitter can also be analyzed (phase monitor function).

- **Spectrum Measurement Mode**
 Measurement is possible with a wide dynamic range of 90 dB (typ.) and high sensitivity of -140 dBV (typ., at a 2 kHz range). This is effective in harmonic distortion analysis and micro-level noise analysis.

Spectrum Analyzers

R9211Series

16-Bit Resolution, 100 kHz Portable Type

Frequency Response Function Measurement Mode
In this mode, frequency resolution can be varied from 25 to 800 lines. Also, since 2 power supply channels for acceleration sensors are built-in, direct measurements of transfer functions of structural components are possible by connection of a sensor with a built-in amp or an impulse hammer.

Servo Analysis Mode (R9211B, R9211C)
The R9211 Series features a built-in summation amplifier for open loop characteristics evaluation, servo measurement with up to a 5 decade log sweep and a point servo measurement function with a frequency table of only specified frequencies.

Features of each type

<table>
<thead>
<tr>
<th>R9211E</th>
<th>16 Bit Resolution, 90 dB (Typ.) Wide Dynamic Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 mHz to 100 kHz Frequency Range</td>
</tr>
<tr>
<td></td>
<td>Maximum Input Sensitivity:-140 dBV (2 kHz Range, Typ.)</td>
</tr>
<tr>
<td></td>
<td>12 kg Portable Type, 8 inch CRT</td>
</tr>
<tr>
<td></td>
<td>Easy-to-Use Separate Measurement Domain Modes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R9211A</th>
<th>Running Zoom Function With Minimum Span of 10 mHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 Bit Resolution, 90 dB (Typ.) Wide Dynamic Range</td>
</tr>
<tr>
<td></td>
<td>10 mHz to 100 kHz Frequency Range</td>
</tr>
<tr>
<td></td>
<td>Easy-to-Use Separate Measurement Domain Modes</td>
</tr>
<tr>
<td></td>
<td>3.5 inch Floppy Disk Drive Provided Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R9211B</th>
<th>130 dB Minimum Wide Dynamic Servo Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 mHz to 100 kHz Frequency Range</td>
</tr>
<tr>
<td></td>
<td>High Speed Auto-Rango Function, Frequency Resolution Variation Function (25 to 800 Lines), SSS Format High Speed Measurement</td>
</tr>
<tr>
<td></td>
<td>Built-in Addition Amplifier Ideal For Servo Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R9211C</th>
<th>Curve Fit Function, Frequency Response Function Synthesis Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130 dB Minimum Wide Dynamic Servo Analysis</td>
</tr>
<tr>
<td></td>
<td>High Speed Auto Range Function, Frequency Resolution Variation Function (25 to 800 Lines), SSS High Speed Measurement</td>
</tr>
</tbody>
</table>

Functions and Options

- Curve Fit Function
- Frequency Response Function Synthesis Function
- SSS Format High Speed Measurement
- Easy-to-Use Separate Measurement Domain Modes
- 16 Bit Resolution, 90 dB (Typ.) Wide Dynamic Range
- 10 mHz to 100 kHz Frequency Range
- Maximum Input Sensitivity:-140 dBV (2 kHz Range, Typ.)
- 12 kg Portable Type, 8 inch CRT
- Easy-to-Use Separate Measurement Domain Modes
- Running Zoom Function With Minimum Span of 10 mHz
- 15 Bit Resolution, 90 dB (Typ.) Wide Dynamic Range
- 10 mHz to 100 kHz Frequency Range
- Easy-to-Use Separate Measurement Domain Modes
- 3.5 inch Floppy Disk Drive Provided Standard
- 130 dB Minimum Wide Dynamic Servo Analysis
- 10 mHz to 100 kHz Frequency Range
- High Speed Auto-Rango Function, Frequency Resolution Variation Function (25 to 800 Lines), SSS Format High Speed Measurement
- Built-in Addition Amplifier Ideal For Servo Analysis
- Curve Fit Function, Frequency Response Function Synthesis Function
- 130 dB Minimum Wide Dynamic Servo Analysis
- High Speed Auto Range Function, Frequency Resolution Variation Function (25 to 800 Lines), SSS High Speed Measurement

Applications

- Oscillation/structural components analysis
- Telephone line terminal equipment evaluations
- Digital audio sound output evaluations
- Evaluations of servos in CD/DAT/video disk players
- Digital servo evaluations
- 1/1 and 1/3 octave analysis
- Transient signal characteristics (indoor, in-car acoustic analysis)
- Optical disk mechanical characteristics evaluations
- Evaluations of servos in CD/DAT/video disk players
- Digital servo evaluations
- Analysis by frequency response function synthesis
- Digital amp/digital filter evaluations
- Digital servo evaluations
- 1/1 and 1/3 octave analysis
- Optical disk mechanical characteristics evaluations
- Transient signal characteristics (indoor, in-car acoustic analysis)
- 130 dB wide dynamic range servo analysis

Note: Selection of only one possible of the items marked with a.
Spectrum Analyzers

Choice of 4 Types, To Fit the Application

R9211Series (Continued From Previous Page)

Specifications

Input and Analysis Characteristics

Number of input channels: 2
Input format: Difference input format, signal ended format
Input impedance: Approx. 1 MΩ/100 pF (at signal ended)
Input coupling: AC, DC, GND
A/D converter resolution: 16 bits
Frequency range: 10 mHz to 100 kHz, 22 ranges in 1, 2, 5 steps
Frequency accuracy: ± 50 ppm of frequency range ± measurement resolution (at +23°C ± 5°C)
Input filter: Anti-aliasing filter (roll off characteristic -148 dB/oct.) is applied to each frequency range and automatically set. However, at ranges of 1 kHz and below, analog and digital filters are used together
Common-mode rejection ratio (CMRR):
50 dB min. (with DC coupling, at 50/60 Hz)
Maximum difference input voltage: ± 200 V
Maximum in-phase input voltage: ± 200 V
Input range: ±30 to -60 dBV (variable in 1 dB steps)
Voltage display: 44.7 V to 1.41 mV, rms display, 31.6 V to 1 mV
Auto range: Set at the optimum range stated above according to the input signal (5 dB steps)
Maximum in-phase signal voltage:
± 14 V (-60 to -6 dBV range)
± 140 V (-5 to +14 dBV range)
± 200 V (+15 to +30 dBV range)
Maximum input sensitivity: -125 dBV (approx. 0.56 µVrms) (at ±140 dBV, 2 kHz range)
Dynamic range: All dynamic ranges are those measured at full scale in spectrum mode, 0 to 90% of frequency range, sine wave input with -3 dB amplitude level, 32 averagings, rectangular wave weighting, filter on, 400-spectrum-line condition. Also, 1/f noise is excluded. (23°C ± 5°C)
85 dB min. (+30 to -30 dBV) (90 dB typ.)
80 dB min. (-31 to -40 dBV)
70 dB min. (-41 to -50 dBV)
60 dB min. (-51 to -60 dBV)
Residual noise: All residual noise values are those measured at full scale in spectrum mode, 32 averagings, rectangular wave weighting, filter on, 400-spectrum-line condition. Also, 1/f noise is excluded. However, at 0 to 90% of frequency range (23 ± 5°C)
-85 dB min. (+30 to -40 dBV)
-75 dB min. (+41 to -45 dBV)
-60 dB min. (+46 to -60 dBV)
Amplitude linearity: ± 0.2 dB max.
(within -40 dB from full scale, +23 ± 5°C)
Frequency flatness: ± 0.3 dB max. (at 23 ± 5°C)
At 0 to 90% of frequency range, AC coupled -3 dB point is approx. 0.2 Hz
Amplitude accuracy: Amplitude linearity + frequency flatness (at 23 ± 5°C)
Amplitude difference between channels: In same sensitivity range, at 0 to 90% of frequency range (23 ± 5°C)

Phase difference between channels: In same sensitivity range, at 0 to 90% of frequency range (at 23 ± 5°C)

<table>
<thead>
<tr>
<th>R9211E/R9211A</th>
<th>R9211B/R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within ±0.3°</td>
<td>Within ±1.0°</td>
</tr>
</tbody>
</table>

Power supply for accelerometers: Only AC input coupling,
4 mA source current, + side of channel A or B
Max. operating voltage +18 V, open circuit voltage 24 V max.

Overload display: LED
Test signal: At frequency ranges from 100 to 2 kHz, amplitude level: approx. -4 dBV, frequency: sine wave, 8% of range

Trigger

Trigger modes: Free run mode, manual trigger mode, external trigger mode, input signal trigger mode, automatic repeat trigger mode

Trigger source: Input signal trigger through channel A or B signal; external signal trigger by EXT signal

Trigger level:
Input signal trigger: Set by number keys with a resolution of 1/256 of amplitude range
External signal trigger: TTL, rising or falling edge can be selected (rear panel BNC connector)

Trigger slope: +, -, ± (input signal trigger)
Trigger position: -128 K to +1 M sample, with 1 channel measurement
-64 K to +1 M sample, with 2 channel measurement

Averaging

Frequency domain averaging modes: Addition (SUM), subtraction (SUB), exponential function moving average (EXP), peak value detection (PEAK)

Time domain averaging modes: Addition (SUM)
Delay domain averaging modes: Addition (SUM)
Amplitude domain averaging modes: Addition (SUM)

Number of averagings: 1 to 32767
Overlapping: 0%, 50%, 75%, MAX
Start/Stop control: Start, stop, +1, continue (except for servo mode) (erasing done automatically during start)

Measurement Modes

- Waveform measurement mode
- Spectrum measurement mode
- Time/frequency analysis mode
- Frequency response function measurement mode
- Servo analysis mode (R9211B/C)

Waveform Measurement Mode

Measurement functions:
- Time domain instantaneous data, time domain average data, auto-correlation function, cross-correlation function, probability density function, cumulative distribution function
- Amount of analysis data: 64 to 8192 points (1 channel), 64 to 4096 points (2 channels)
- Amount of delay domain data: 64 to 2048 points
- Averaging: Time domain averaging, Delay domain averaging
- Amplitude domain averaging
- Conversion function: Engineering units
- Marker analysis functions: Peak value, rise time, fall time, pulse width, root-mean-square value
Calculation functions: Differentiation, integration, smoothing, trend elimination, basic arithmetic, pre-envelope
Display functions: Time/amplitude, amplitude/probability density, orbit

Spectrum Measurement Mode
Measurement functions: Complex spectrum, power spectrum, cross-spectrum, time waveform
Averaging: Frequency domain averaging
Amount of analysis data: 64 to 8192 points (1 channel)
64 to 4096 points (2 channels)
Frequency resolution:
 - Linear 25 to 3200 lines (1 channel)
 - 25 to 1600 lines (2 channels)
 - Log 3 decades max., 80 lines/decade
 - Other 1/3 octave, 1/1 octave
Window functions: Rectangular, Hanning, minimum, flat-pass, force/response
 * With log frequency resolution and octave resolution, window functions are Hanning, minimum or rectangular
Weighting: A, B, C weighting, C message weighting
Conversion functions: Engineering units
Marker analysis functions: Peak marker, next peak marker, band marker, harmonics marker, sideband marker, overall power, partial power, average power, dispersion
Calculation functions: Basic arithmetic, pre-envelope, liftered spectrum, power cepstrum, jw, 1/jw, smoothing
Display functions: Frequency/amplitude, frequency/phase, frequency/real number component, frequency/imaginary number component, Nyquist diagram

Time/Frequency Analysis Mode
Basic measurement functions: Time waveform, complex spectrum, power spectrum, cross-spectrum
Time/frequency analysis mode: Level monitor, phase monitor, frequency monitor
Averaging: Frequency domain averaging
Frequency resolution:
 - Linear 25 to 800 lines
 - Log 3 decades max., 80 lines/decade
 - Other 1/3 octave, 1/1 octave
Window functions: Rectangular, Hanning, minimum, flat-pass, force/response
 * With log frequency resolution and octave resolution, window functions are Hanning, minimum or rectangular
Weighting: A, B, C weighting, C message weighting
Conversion functions: Engineering units
Marker analysis functions: Peak marker, next peak marker, band marker, harmonics marker, sideband marker, overall power, partial power, average power, dispersion, + peak marker, - peak marker
Calculation functions: Basic arithmetic, pre-envelope, liftered spectrum, power cepstrum, jw, 1/jw, smoothing, cumulative level monitor

Display functions: Frequency/real number component, frequency/imaginary number component, frequency/amplitude, frequency/phase, Nyquist diagram, time/level, time/phase, time/frequency

Frequency Response Function Measurement Mode
Measurement functions:
 - Frequency response function, group delay, coherence function, power spectrum, phase spectrum, impulse response function, time waveform
Averaging: Frequency domain averaging
Amount of analysis data: 64 to 2048 points
Frequency resolution:
 - Linear, 25 to 800 lines
Window functions: Rectangular, Hanning, minimum, flat-pass, force/response
Weighting: A, B, C weighting, C message weighting
Conversion functions: Engineering units
Marker analysis functions: Peak marker, next peak marker, band marker, harmonics marker, sideband marker, overall power, partial power, average power, dispersion, + peak marker, - peak marker
Calculation functions: Basic arithmetic, unwarped phase, jw, 1/jw, reciprocal, impulse response, equalize, phase correction, COP (coherent output power)
Display functions:
 - Frequency/amplitude, frequency/phase, frequency/real number component, frequency/imaginary number component, frequency/delay, frequency/associativity function, Nyquist diagram, Cole-Cole diagram, Nichols diagram

Servo Analysis Mode (R9211B/9211C)
Measurement functions:
 - Frequency response function, group delay, coherence function, power spectrum, cross-spectrum, time waveform
Sweep modes: Linear sweep, log sweep
Signal source for servo measurement: Linear/log sign sweep signal, linear multi-sign sweep signal, log multi-sign signal
Output impedance: 1 Ω max.
Maximum output voltage:
 - ±15 V (when output impedance is 1 Ω or less)
Maximum output current:
 - 100 mA (when output impedance is 1 Ω or less)
DC offset: ±10 V (0.1 V resolution)
Summation amplifier: Can be turned on or off
Number of averagings: Fixed or automatic
Signal source bandwidth: Fixed or automatic
Frequency table servo function: Measurement can be done by grouping together output waveform, output voltage, DC offset, measurement frequency range and number of averagings (20 groups max.)
Frequency resolution:
 - Linear 25 to 800 lines
 - Log 1 to 6 decades (25 to 200 lines/decade)
However, setting of up to only 5 decades is possible at 200 lines.
Conversion functions: Engineering units
Spectrum Analyzers

Choice of 4 Types To Fit the Application

R9211Series (Continued From Previous Page)

Marker analysis functions: Peak marker, next peak marker, band marker, harmonics marker, sideband marker, overall power, partial power, average power, dispersion, + peak marker, - peak marker, X dB marker, shape factor marker, ripple marker, open loop Bode diagram marker, open loop gain marker

Calculation functions: Basic arithmetic, unwrapped phase, jw, 1/jw, reciprocal, impulse response, equalize, phase correction, COP (coherent output power), open/closed loop conversion

Display functions: Frequency/amplitude, frequency/phase, frequency/real number component, frequency/imaginary number component, frequency/group delay, frequency/associativity function, Nyquist diagram, Cole-Cole diagram, Nichols diagram

Curve Fitting Function

Up to 20 groups of range poles and zeroes are sampled from frequency response function data

Weighting: Auto weight, uniform weight, user weight

Conversion function: Sampled range poles and zeroes can be converted to range poles and residue or polynomials

Synthesis Function

Frequency response function, impulse response and step response can be synthesized from sampled range poles and zeroes or values of entered range poles and zeroes.

Signal generator (R9211B/9211C) Except for servo analysis mode

Output waveform: Sine wave (spot), swept sign, multi-sign, impulse, random, user selected waveform (max. memory size: 64 K words)

Maximum output voltage: ± 15 V (at 1 Ω max. output impedance)

Maximum output current: 100 mA (at 1 Ω max. output impedance)

DC offset: ± 10 V (0.1 V resolution)

Output impedance: 1 Ω max., 50 Ω, 600 Ω

Output modes: Continuous, internal, external, external gate, manual

Taper function: 200 ms max.

Summation amplifier: Can be turned on or off

Running zoom function: (R9211A/9211C)

- When the stop frequency is less than 10 kHz, the minimum span is 10 mHz. When the stop frequency is 10 kHz or more, zoom analysis can be done with a minimum span of 100 mHz.

Comparator Function (R9211C)

Setting modes: Table mode, reference mode

Table mode: Up to 20 groups of comparative sections can be set

Reference mode: Comparator can be done against a reference waveform

Target waveform: Comparator can be done against frequency domain data

Comparator results:
- PASS/FAIL displayed on screen
- Buzzer
- Output from rear by TTL O/C

Display Specifications and Functions

Display functions: 8-inch raster scan CRT

Engineering units: Marker readout values and vertical axis scaling can be displayed as freely specified physical quantities

Scaling: Linear/log scaling, scaling can be done independently for each channel

Units: Up to any 2 characters among those specified can be set

Display modes: 1, 2, 3 or 4 screen display

Overlapping display mode: Data in the same domain or analysis range can be displayed in overlapping format

Lattice display: Can be turned on or off

3-D display: Up to 50 lines of the desired display data can be displayed in 3-D

Bar display: Overall power, partial power, average power or power dispersion can be shown as a bar display at the right edge of the CRT screen

Labels: Up to 40 alphanumeric or special characters can be displayed and moved up and down

List modes:
- **Single mode**: 20 spectrum frequency values and level values in the display can be selected by cursor and listed in a digital display
- **Harmonics mode**: When the basic spectrum is set by entering the values, the level values are listed in a digital display, and THD (total harmonic distortion) and THP (total harmonic power) are calculated and displayed
- **Sideband mode**: When carrier frequency and modulated signal frequency are set by entering the values, the upper waveband and lower waveband power up to the 10th degree is calculated and displayed

Horizontal axis: Linear, log

Vertical axis: Can be freely set by entering the values

Calendar/clock function: Calendar (year/month/day) and hour/minutes display

Memory function:

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory (128 K words)</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>-</td>
</tr>
<tr>
<td>I/O + memory (1 M words)</td>
<td>Option 11</td>
<td>Option 11</td>
<td>Option 11</td>
<td>Standard</td>
</tr>
<tr>
<td>CMOS memory (1 M words)</td>
<td>Option 10</td>
<td>Option 10</td>
<td>Option 10</td>
<td>Option 10</td>
</tr>
</tbody>
</table>

Transient waveform data memory: In time/frequency analysis mode

Panel memory: Remembers panel settings (battery backup, settings last about 1 month)

Input/Output Functions

GPIB interface: Provided as standard

Plotter output: Direct plotting can be done with any ADVANTEST plotter with a GPIB interface, or a plotter with HPGL function and GPIB cable

External sampling clock input: BNC type, TTL level

External trigger input: BNC type, TTL level

Sampling clock output: BNC type, TTL level

Trigger output signal: BNC type, TTL level

Floppy Disk Drive

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: 3.5 inch micro floppy disk</td>
<td>Option 06</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Media: 2DD/2HD (automatically identified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity: 720 K/1.2 M bytes (when formatted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format: Can be converted to MS-DOS format</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File format: Data file, view file, table file</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data file operations: List, create, erase, search, copy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I/O + Memory Function

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory capacity: 1 M words (2 M bytes)</td>
<td>Option 11</td>
<td>Option 11</td>
<td>Option 11</td>
<td>Standard</td>
</tr>
<tr>
<td>Digital input: Digital input can be done with the internal A/D converter, or an external digital signal (max. sampling rate 256 kHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data format: 16 bit + EOC signal (offset binary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16-Bit Resolution, 100 kHz Portable Type

R9211Series

Digital output: Internal A/D converter data is output
Data format: 16 bit + channel identifier signal + strobe signal
(offset binary)

Comparator output: (R9211C) Comparator function output is possible using O/C output

CMOS Memory Function

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1 M words (2 M bytes) battery backup memory

Thermal Printer

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
</tr>
</tbody>
</table>

Hard copy of CRT screen
Printing method: Thermal line/dot method
Dot configuration: 640 dots/line
Paper used: A09075
Paper width: 114 mm

High speed calculation processor functions

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>—</td>
<td>Option 12</td>
<td>—</td>
<td>Standard</td>
</tr>
</tbody>
</table>

High speed numerical calculations

Running Zoom Analysis Function (R9211A/9211C)
When the stop frequency is less than 10 kHz, the minimum span is 10 mHz. When the stop frequency is 10 kHz or more, zoom analysis can be done with a minimum span of 100 mHz.

General Specifications
Operating conditions: Temperature +5 to +35˚C, RH 80% max.
Storage conditions: Temperature -20 to +60˚C
Power supply: Specify at time of ordering

<table>
<thead>
<tr>
<th>Option no.</th>
<th>Standard</th>
<th>32</th>
<th>42</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power voltage (V)</td>
<td>90 to 110</td>
<td>103 to 132</td>
<td>108 to 242</td>
<td>207 to 250</td>
</tr>
<tr>
<td>Power consumption: Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 to 66 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 VA max.</td>
<td>160 VA max.</td>
<td>170 VA max.</td>
<td>190 VA max.</td>
<td></td>
</tr>
<tr>
<td>External dimensions: Approx. 330 (W) × 177 (H) × 450 (D) mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass: Main unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R9211E</th>
<th>R9211A</th>
<th>R9211B</th>
<th>R9211C</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 kg max.</td>
<td>14 kg max.</td>
<td>14 kg max.</td>
<td>16 kg max.</td>
<td></td>
</tr>
</tbody>
</table>

Accessories
Power Cable: A01402 (one)
Input Cables: MI-77 (two)
T-Type Connector

Accessories (Sold Separately)
A02804 Front Cover
R16211 Carrying Case
R16055 Transit Case
A02034 Panel Mount Set
A02255 Rack Mount Set (JIS standard)
A02455 Rack Mount Set (EIA standard)